
ReactDjangoApp
- By Likhith Seera

Link to Project: https://github.com/likhithseera/ReactDjangoApp

Overview
-------------
This project consists of a simple website built with React.js for the frontend and Django for the backend.

Frontend
- React.js: Displays a list of items fetched from the Django backend.

Backend
- Django: Provides two API endpoints to fetch and manage items.

Setup Instructions
----------------------------------
Frontend:
1. Navigate to the 'myfrontend' directory.
2. Run 'npm install' to install dependencies.
3. Run 'npm start' to start the development server.

Backend:
1. Navigate to the ‘myproject’ directory.
2. Run ‘pip install -r requirements.txt’ to install dependencies.
2. Run 'python manage.py runserver' to start the Django development server.

We need to be ensure that the backend server is running on 'http://localhost:8000' for the frontend to
properly fetch data which runs on 'http://localhost:3000'.

https://github.com/likhithseera/ReactDjangoApp


3-tier AWS architecture diagram based on the website



Description
----------------

The ReactDjangoApp uses a three-tier AWS architecture with Presentation, Application, and Data
Layers. Users interact with the website by sending and receiving HTTP requests and responses over the
internet.

In the Presentation Layer, there are three main components: Amazon Route 53, Amazon
CloudFront, and Amazon S3. Amazon Route 53 manages DNS records to direct traffic to Amazon
CloudFront, which caches and delivers content closer to users, reducing latency. Amazon S3 hosts the
static website and stores assets like images, scripts, and stylesheets.

The Application layer consists of three key components: Amazon EC2, Amazon ELB, and Amazon
Auto Scaling. Amazon EC2 hosts the Django application, managing the core functions and servers of
the website. Amazon ELB distributes incoming traffic across multiple EC2 instances to ensure the site
remains reliable and available. Amazon Auto Scaling adjusts the number of EC2 instances based on
traffic demands, allowing the application to handle varying levels of visitors efficiently.

The Data layer generally consists of databases for storing data. Here, Amazon RDS is used for
managing relational database services, while Amazon DynamoDB is used for handling NoSQL
database services, whereas Amazon S3 stores backups, logs, and large amounts of unstructured data.


